每日一题:100 doors
每日一题:100 doors
Task
There are 100 doors in a row that are all initially closed.You make 100 passes by the doors.The first time through, visit every door and toggle the door (if the door is closed, open it;if it is open, close it).The second time, only visit every 2nd door(door #2, #4, #6, …),and toggle it.The third time, visit every 3rd door(door #3, #6, #9, …), etc,until you only visit the 100th door. Answer the question: what state are the doors in after the last pass? Which are open, which are closed?
Solution
最先想到的办法就是两层循环仿真一遍,时间复杂度是O(nlogn),推导如下:
n + n/2 + n/3 + n/4 + … + n/n = n(1+1/2+1/3+1/4+…+1/n) = n(ln(n+1)+r)
欧拉近似地计算了r的值,约为0.577218,这个数字后来称作欧拉常数。
但换个角度,第m扇门,如果有a,b < m且a*b=m
,那么一开一关互相抵消,以6为例,会在1、2、3,6发生翻转,显然6=1*6=2*3
,但对于可以开方的数,比如9=1*9=3*3
,会在1、3、9发生翻转,由于3重复了,所以相当于执行了一次翻转。因此如果m可以开方,则开着;不可以开方,则关着。